Approximating Prediction Uncertainty for Random Forest Regression Models
نویسندگان
چکیده
منابع مشابه
Approximating Prediction Uncertainty for Random Forest Regression Models
Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as inputs to other modeling ...
متن کاملInference for Approximating Regression Models
The assumptions underlying the Ordinary Least Squares (OLS) model are regularly and sometimes severely violated. In consequence, inferential procedures presumed valid for OLS are invalidated in practice. We describe a framework that is robust to model violations, and describe the modifications to the classical inferential procedures necessary to preserve inferential validity. As the covariates ...
متن کاملApproximating prediction error covariances among additive genetic effects within animals in multiple-trait and random regression models
A method for approximating prediction error variances and covariances among estimates of individual animals genetic effects for multiple-trait and random regression models is described. These approximations are used to calculate the prediction error variances of linear functions of the terms in the model. In the multiple-trait case these are indexes of estimated breeding values, and for random ...
متن کاملApproximate accuracies of prediction from random regression models
A procedure for obtaining approximate reliabilities of estimated breeding values under a random regression model is presented. The method is based on a concept of an equivalent number of progeny, with subsequent selection index approximation of reliability utilising equivalent progeny information on the animal and its parents. The accuracy of the proposed approximation was tested using a multip...
متن کاملRandom regression models for estimation of covariance functions of growth in Iranian Kurdi sheep
Body weight (BW) records (n=11,659) of 4961 Kurdi sheep from 215 sires and 2085 dams were used to estimate the additive genetic, direct and maternal permanent environmental effects on growth from 1 to 300 days of age. The data were collected from 1993 to 2015 at a breeding station in North Khorasan province; Iran. Genetic parameters for growth traits were estimated using random regression test-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Photogrammetric Engineering & Remote Sensing
سال: 2016
ISSN: 0099-1112
DOI: 10.14358/pers.82.3.189